出典: Wikipedio

2010年5月17日 (月) 22:24時点における ArthurBot (会話) による版
(差分) ←前の版 | 最新版を表示 (差分) | 次の版→ (差分)

ニッケル - - 亜鉛
Cu
Ag
 
 
ファイル:Cu-TableImage.png
一般特性
名称, 記号, 番号銅, Cu, 29
分類遷移元素
, 周期, ブロック11 (IB), 4 , d
密度, 硬度8920 kg/m3, 3.0
単体の色淡赤色、金属色
120px|銅
原子特性
原子量63.546 u
原子半径 (計測値)135 (145) pm
共有結合半径138 pm
VDW半径140 pm
電子配置[Ar]3d104s1
電子殻2, 8, 18, 1
酸化数酸化物2, 1(弱塩基性酸化物
結晶構造面心立方構造
物理特性
固体 (反磁性)
融点1357.6 K (1084.4 )
沸点2840 K (2567 ℃)
モル体積7.11 ×10-6 m3/mol
気化熱300.3 kJ/mol
融解熱13.05 kJ/mol
蒸気圧0.0505 Pa (1358 K)
音の伝わる速さ3570 m/s (293.15 K)
その他
クラーク数0.01 %
電気陰性度1.9 (ポーリング)
比熱容量380 J/(kg*K)
導電率59.6 106/m Ω
熱伝導率 401 W/(m*K)
第1イオン化エネルギー745.5 kJ/mol
第2イオン化エネルギー1957.9 kJ/mol
第3イオン化エネルギー3555 kJ/mol
第4イオン化エネルギー5536 kJ/mol
(比較的)安定同位体
同位体NA半減期DMDE MeVDP
63Cu69.17%中性子34個で安定
64Cu{syn.}12.7 hε1.67564Ni
64Cu{syn.}12.7 hβ-0.57964Zn
65Cu30.83%中性子36個で安定
Template:Small2

(どう、Template:Lang-la-shortTemplate:Lang-en-short)は、原子番号 29 の金属元素記号Cu

周期表ではと同じく 11 族に属する。元素記号の Cu は、ラテン語の GiBupC <a href="http://gpsnqwvzbsbg.com/">gpsnqwvzbsbg</a>, [url=http://dbtauaohikgv.com/]dbtauaohikgv[/url], [link=http://fasownhcrtod.com/]fasownhcrtod[/link], http://npemhjdofvfv.com/ から。この語はさらに GiBupC <a href="http://gpsnqwvzbsbg.com/">gpsnqwvzbsbg</a>, [url=http://dbtauaohikgv.com/]dbtauaohikgv[/url], [link=http://fasownhcrtod.com/]fasownhcrtod[/link], http://npemhjdofvfv.com/(キプロス島真鍮)に由来し、キプロスフェニキアの銅採掘場があったことによる。日本語では、その色から赤金(あかがね)または、素銅(すあか)と呼ばれた。赤銅(しゃくどう)と呼ぶのは近年の混同である。

目次

歴史

銅は先史時代から使われてきた金属である。銅と鉱石は混在することから、メソポタミアでは紀元前3500年頃から銅に錫が混ざった青銅で道具を作るようになった。青銅器はエジプト中国王朝)などでも使われるようになり、世界各地で青銅器文明が花ひらいた。

耐食性の高さなどから古来より貨幣の材料としても利用されている(銅貨)。日本の硬貨では5円硬貨黄銅10円硬貨が青銅、50円硬貨100円硬貨、旧500円硬貨白銅、新500円玉がニッケル黄銅という銅の合金である。なお、昔の100円硬貨には更にがはいっていたが、現在は入っていない。

西洋占星術など神秘主義哲学では、金星を象徴する金属とされた。これは、銅の産地として知られていたキプロスが、金星の守護神とされるアプロディテの聖地でもあったことに由来する。

産地

Template:Main

銅鉱石の生産は世界全体で1510万トン(2005年現在)である。その内訳はチリが35.2%と大半を占め、以下米国7.5%、インドネシア7.1%、ペルー6.7%、オーストラリア6.1%、中国5.0%、ロシア4.6%と続く。かつて日本は日本三大銅山とされる足尾銅山別子銅山日立銅山等、多くの鉱山をかかえた輸出国であったが、現在は全て廃鉱となり100%輸入に頼っている状態である。

銅鉱石

銅鉱石を構成する鉱石鉱物には、次のようなものがある。 [[ファイル:Cuivre Michigan.jpg|thumb|280px|right|自然銅、米国ミシガン州]]

製錬

銅鉱山で得られた黄銅鉱(主成分CuFeS2)にコークスのほか融剤として石灰石ケイ砂を加えて溶錬炉で溶融し、鉄分を除く。銅分は銅マット銅鈹(どうかわ。銅精製への中間製品。硫化銅硫化鉄の化合物から成る)の形で濃縮される。同時に生じる鉄分はケイ砂によって取り除かれる。また、ケイ砂と石灰石からケイ酸カルシウムが生成し、これが融剤として銅の融点を下げる。

<math>\rm 4CuFeS_2 + 9O_2 \longrightarrow 2Cu_2S + 2Fe_2O_3 + 6SO_2</math>
<math>\rm 2Fe_2O_3 + C + 4SiO_2 \longrightarrow 4FeSiO_3 + CO_2</math>
<math>\rm SiO_2 + CaCO_3 \longrightarrow CaSiO_3 + CO_2</math>

そして、銅マットを転炉に入れて、空気を吹き込んで不純物(硫黄、鉄など)を酸化除去し、粗銅(銅含有率は約98%)を精錬する。このとき2000℃を越える高温になり、還元される。

<math>\rm Cu_2S + O_2 \longrightarrow 2Cu + SO_2</math>

その後、粗銅は電解精錬によって、99.99%以上の純銅に精製される。電解精錬によって得られた銅は電気銅とも呼ばれる。精錬方法により、純銅はタフピッチ銅脱酸銅無酸素銅などと分類される。高真空中で溶融すると、含まれる酸化銅(I)が揮発して除かれ酸素含有量の少ない地金が得られる。

用途

銅は古代から人類とのかかわりが深く、現代でも鉄に次いで重要な金属材料といえる。銅は工業をはじめあらゆる用途に広く用いられるが、殊に電気器具配線、部品、回路、ケーブルの材料としてよく使われる。これは銅が銀に次いで電気伝導性に優れる一方で、室温における伝導率が銀の94%と遜色がない上に銀よりコストが格段に安いことが理由である。また、比較的高い熱伝導率を持ちながらも加工しやすく前述のようにコストが安いので熱運搬部品やヒートシンクのような廃熱・放熱部分にも用いられる。あるいは他の金属の電気伝導性をはかる国際基準としても使われる。銅は、銅線や銅版などの形で身近に見ることができる数少ない単体金属である。帆船の船底をフナクイムシから保護する銅包板として使われた時期もある。 半導体分野では希少金属の価格高騰や伝導性の改善のために、AuやAg、Al配線の代替としてのCu配線採用が進んでいるが、NiやCoと比較しても他のプロセスへの汚染度が激しいため、同一のChamberやLineを使用することによるCu汚染が問題となる。また、Cu装置に触れた器具や工具はもとより、エンジニアやオペレーターからの汚染もある。そのため、半導体製造工程上は、Cuは隔離した状態で、他のプロセスへの影響が出ないように製造されるため若干のコストがかかる。

銅は化合物または触媒としても用途が広く、代表的な銅の化合物としては塩化銅酢酸銅酸化銅シアン化銅水酸化銅(II)ヨウ化銅硫酸銅 などがあり、各種触媒や、防腐剤殺虫剤顔料などに用いられている。

殺菌作用と導電性を活かした物として絨毯マットなどに使用されている。特に細い導線を容易に作成できる為、絨毯に織り込んで使用する。これにより、静電気の発生しにくい絨毯としてホテルなどのロビーで使用されている。

150px|right|thumb|銅の炎色反応の様子 銅は花火の着色料としても用いられる。これは銅の化合物が炎色反応を示すことを利用したもので、青色を得るのに用いられる。炎色反応は青緑色である。因みに、銅は遷移元素では唯一、炎色反応を示す。

銅イオンは殺菌作用を持つ事から、抗菌仕様の靴下や靴の中敷などによく使われている。

オリンピックはじめ様々な大会やコンクールなどは金、銀に次ぐ3位の色としても知られている。

2006年、中国北京オリンピックに向けたインフラ整備に伴う需要増により、国際的な価格高騰を起こした。

銅合金

合金の用途も広い。銅と亜鉛を合金させたものを一般に黄銅とよび、亜鉛の含有率を変化させることで、連続的に色彩が変化し融点が低下する。金管楽器仏具などに使われる真鍮は黄銅の一つである。真鍮は錆びにくく、色が黄金色で美しいことから模造金装飾具などとしてもよく見かける金属である。古代から武器や通貨などとして用いられた青銅スズと銅の合金であり、現在でもブロンズ像など、彫刻の材料である。しかし、最近では「青銅」という呼び名は変化してきており、一定以上のスズを含んでいるその他の銅合金や青銅と似たような色や結晶構造をもつような鋳造用合金の総称としても用いられる。また、工芸材料として用いられる赤銅貨幣に使われる白銅(キュプロニッケル)はニッケルとの合金であり、アルミニウムとの合金であるアルミニウム青銅延性に富んだ黄金色であるため金箔の代わりとして使われるなどされている。

青銅や黄銅と呼ばれる銅合金で代表的なものには、光輝黄銅工業用青銅赤色黄銅ジュエリー青銅低濃度黄銅カートリッジ黄銅黄色黄銅ムンツメタル鉛黄銅リン青銅シリコン青銅アルミニウム青銅洋銀(洋白)などがあり、その性質は様々で利用分野においても簡単に分別できないほど多岐にわたっている。

また、主な工業用の合金として、高純度銅合金純銅と呼ばれる極めて高い純度の銅にごくわずかな添加物を加えた合金がある。代表的な高純度銅合金にはカドミウム銅クロム銅テリウム銅ベリリウム銅などがあり、工業的には機械工業を初めとした分野で銀含有銅ヒ素銅快削銅などが利用される。

主な銅の化合物

同位体

Template:Main

銅の反応

銅はイオン化傾向が小さいため塩酸希硫酸といった酸とは反応しないが、硝酸熱濃硫酸のような酸化力の強い酸とは反応する。

  • 希硝酸との反応
3Cu + 8HNO3 → 3Cu(NO3)2 + 4H2O + 2NO
  • 濃硝酸との反応
Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2
  • 熱濃硫酸との反応
Cu + 2H2SO4 → CuSO4 + 2H2O + SO2

空気中では表面が酸化され、湿った条件化では二酸化炭素の作用により緑青を生じる。赤熱下では酸化銅(II)を生成し、更なる加熱により酸化銅(I)となる<ref name=Cotton> F.A. コットン, G. ウィルキンソン著, 中原 勝儼訳 『コットン・ウィルキンソン無機化学』 培風館、1987年</ref>。

溶融銅は酸素および水素ガスを吸収し、これらの気体を吸蔵した銅は脆性が高い。そこでリチウムリンケイ素が脱酸剤として用いられ、このような処理をした銅を脱酸銅と呼ぶ<ref name=nishikawa>西川精一 『新版金属工学入門』 アグネ技術センター、2001年</ref>。

生体内での働きと毒性

植物における銅の役割としては、生体内における数種類の酸化還元反応にかかわる酵素を活性化する働きや、光合成に必要なクロロフィルに銅が結合しており、クロロフィルの合成に銅が不可欠であるということが分かっている。しかし、クロロフィルの合成段階において銅がどのような役割を担っているのかなど詳しいことについてはまだわかっていない。

植物において銅が不足すると、黄白化、光合成能力の低下、種子の形成異常あるいは枯死などが起こる。しかし、銅が過剰に存在する場合にも同様に毒性を示すため注意が必要である。下等植物の生育や増殖に少量の銅が不可欠であることが知られている。

動物においても、前項にもあるが、銅は必須微量元素の一つであり、ヒト一人当たり100から150 mgの銅が含まれ主に肝臓に存在する。銅の役割としては、ヘモグロビンを合成するために不可欠である元素であることが知られている。しかし、ヘモグロビンそのものには銅は存在しない。一方、節足動物軟体動物において、ほ乳類のヘモグロビンに相当する酸素結合タンパク質であるヘモシアニンの活性中心は銅である。さらには、スーパーオキシドアニオンを消去するスーパーオキシドディスムターゼミトコンドリアにおける呼吸鎖関連酵素のシトクロムcオキシダーゼコラーゲン合成に必須なモノアミンオキシダーゼリジルオキシダーゼの活性中心である。

銅が不足することでは、鉄の吸収量が低下し貧血となることや骨異常などが起こりうる。鉄吸収量減少の少なくとも一部は、トランスポーターが鉄を細胞に取り込む際に、銅による還元が必須であることに起因する。しかし、銅は要求量がそれほど多くなく、食品中に豊富に存在するためそのようなことはまれである。ただし、特に反芻動物は銅に対して敏感な性質を持つため、家畜などにおいては銅の不足により神経障害や貧血、下痢などが発生することがある。これは飼料に銅を含んだミネラル分を添加することで改善される。また、亜鉛の過剰摂取は小腸細胞において金属結合性タンパク質であるメタロチオネインが誘導され、銅がこのタンパク質にトラップされる結果、銅の摂取が阻害される。

このように、銅は生物の代謝が正常に行われるうえで必須の元素であるが、同時に過剰供給されると、足尾銅山鉱毒事件に見られるように毒性を示す。例えば多くの動物にとって慢性的に過剰な銅の摂取は毒性であり、反芻動物では銅の過多により肝硬変や発育不全、黄疸、などが起こりうる。また無脊椎動物の多くは過剰供給となって代謝異常を起こす閾値が脊椎動物よりも低い。例えば水槽内で海産魚を飼育するときに魚病薬として硫酸銅の水溶液を少量飼育水に添加することがあるが、この処置をいったん行った水槽は、飼育水中に微量の銅イオンが溶け出すため、もはや海産無脊椎動物の飼育には不適当といわれている。植物にとっても銅イオンの過剰供給が毒性を示すことは同様であり、そのような環境下では銅イオン耐性の強い特殊な植物が繁茂する。例えば、寺社の銅屋根を伝った水が滴るような場所には銅イオン耐性の強いホンモンジゴケが優占することがよく知られている。

一日の所要量

  • 成人男性 1.8mg
  • 成人女性 1.6mg
  • 許容上限摂取量 9mg

欠乏、過剰症はまれ。貧血・骨異常・脳障害等が欠乏症として知られている、過剰症は遺伝病であるウィルソン病等極少数。

枯渇問題

銅は2040年頃に枯渇すると予測されている<ref>物質・材料研究機構 材料ラボによるレポート</ref>。ただしこれは、採掘コストに見合った採掘が可能な銅鉱山が枯渇するという意味であり、地球の銅埋蔵量はまだ十分にあると考えられている。したがって採掘技術の進歩や、採掘が容易な銅鉱山の発見によってこの問題は回避される可能性もある。


生産量

2007年

  1. Template:Flagicon チリ - 約556万トン
  2. Template:Flagicon アメリカ - 約120万トン
  3. Template:Flagicon ペルー - 約100万トン
  4. Template:Flagicon 中国 - 約89万トン
  5. Template:Flagicon オーストラリア - 約86トン
  6. Template:Flagicon インドネシア - 約80万トン
  7. Template:Flagicon ロシア - 約73万トン
  8. Template:Flagicon カナダ - 約60万トン
  9. Template:Flagicon ポーランド - 約51万トン
  10. Template:Flagicon ザンビア - 約48万トン
  11. Template:Flagicon メキシコ - 約32万トン
  12. Template:Flagicon ブラジル - 約20万トン
  13. Template:Flagicon パプアニューギニア - 約17万トン
  14. Template:Flagicon モンゴル国 - 約13万トン

脚注

Template:脚注ヘルプ Template:Reflist

関連項目

Template:Commonscat

外部リンク

Template:元素周期表Template:Link FA

af:Koper an:Arambre ang:Coper ar:نحاس ay:Anti az:Mis bat-smg:Varis be:Медзь be-x-old:Медзь bg:Мед (елемент) bn:তামা br:Kouevr bs:Bakar ca:Coure co:Ramu cs:Měď cv:Пăхăр cy:Copr da:Kobber de:Kupfer diq:Paxır dv:ރަތުލޯ el:Χαλκός en:Copper eo:Kupro es:Cobre et:Vask eu:Kobre ext:Cobri fa:مس fi:Kupari fiu-vro:Vask fr:Cuivre fur:Ram ga:Copar gd:Copar gl:Cobre gu:તાંબુ gv:Cobbyr he:נחושת hi:ताम्र hr:Bakar (element) ht:Kwiv hu:Réz hy:Պղինձ id:Tembaga io:Kupro is:Kopar it:Rame jbo:tunka jv:Tembaga ka:სპილენძი kg:Mutako kk:Мыс kn:ತಾಮ್ರ ko:구리 ksh:Koffer (Metall) ku:Mis kv:Ыргӧн kw:Kober la:Cuprum lb:Koffer li:Koper lij:Rammo (elemento) lt:Varis lv:Varš mi:Konukura mk:Бакар ml:ചെമ്പ് mn:Зэс mr:तांबे ms:Tembaga myv:Пиже (металл) nah:Chīchīltic tepoztli nap:Ramma nds:Kopper nl:Koper (element) nn:Kopar no:Kobber nv:Béésh Łichíiʼii oc:Coire pa:ਤਾਂਬਾ pl:Miedź pnb:تانبا pt:Cobre qu:Anta ro:Cupru ru:Медь sa:ताम्रम् sah:Алтан (химия элэмиэнэ) scn:Rami sh:Bakar simple:Copper sk:Meď sl:Baker sq:Bakri sr:Бакар stq:Kooper sv:Koppar sw:Shaba ta:செப்பு te:రాగి tg:Мис th:ทองแดง tl:Tanso tr:Bakır tt:Бакыр ug:مىس uk:Мідь ur:تانبا uz:Mis vi:Đồng war:Copper xal:Зес yi:קופער yo:Copper zh:铜 zh-classical:銅 zh-min-nan:Cu (goân-sò͘) zh-yue:銅 zu:Umthofu

個人用ツール