非ユークリッド幾何学

出典: Wikipedio


非ユークリッド幾何学(ひ-ユークリッド-きかがく、GiBupC <a href="http://gpsnqwvzbsbg.com/">gpsnqwvzbsbg</a>, [url=http://dbtauaohikgv.com/]dbtauaohikgv[/url], [link=http://fasownhcrtod.com/]fasownhcrtod[/link], http://npemhjdofvfv.com/)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。

ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。

目次

歴史

平行線公準

ユークリッドの著した「原論」('element')の1~4巻に於いては、今日で言うところのユークリッド幾何学に関して、古代ギリシア数学の成果がまとめられている。

さて、「原論」では最初にいくつかの公理公準を述べているが、その中の第五公準が次の、平行線公準と呼ばれるものである。

1 直線が 2 直線に交わり、同じ側の内角の和を 2 直角より小さくするならば、この 2 直線は限りなく延長されると、2 直角より小さい角のある側において交わること。

これは他の公理に比べて自明性は低く、また明らかに冗長であったので、いくつかの疑念を生ずることとなった。

  • 公理・公準として扱うことは正しいのだろうか? 定理なのでは無いだろうか。
  • あるいは、もっと自明で簡潔な、同値命題が存在するのではないだろうか。

ここから、平行線公準の証明の試み、あるいは平行線公準の言い換えの試みが始まった。

古代ギリシア

  • プロクロスは、「原論」の注釈書に於いて平行線公準が定理なのではないかと述べている。
  • プトレマイオスは「平行線公準を証明した」と主張したが、その証明は巡り巡って「原論」第1 巻命題 29 に依っており、命題 29 は平行線公準により証明されているので主張は正しくなかった。

アラビア

近代ヨーロッパ

古代ギリシャ以降も、無数の「平行線公準の証明」が生まれたが、多くはプトレマイオスと同じ過ちを犯していた。しかし、その結果として「平行線公準と同値な命題」が作られた。

ジョバンニ・ジローラモ・サッケーリは、1773年、論文「あらゆる汚点から清められたユークリッド」(Euclides ab Omni Naevo Vindicatus)において、鋭角仮定・直角仮定・鈍角仮定という互いに背反かついずれかは成立するような仮定を設定し、直角仮定から平行線公準を導けることを示した。

同論文の定理 9 および定理 15 により、各仮定をより分かりやすく言い換えるなら次の通りである。

鋭角仮定
三角形の内角の和は 2 直角よりも小さい
直角仮定
三角形の内角の和は 2 直角に等しい
鈍角仮定
三角形の内角の和は 2 直角よりも大きい

サッケーリは、鈍角仮定および鋭角仮定は矛盾を生じると主張したが、その証明に於いてはやはり平行線公準に依存する命題を使ってしまっており、証明としては正しくなかった。しかしながら、上の 3 つの分類はその後の非ユークリッド幾何学の構築に大きな役割を果たした。

またヨハン・ハインリッヒ・ランベルト1766年執筆の論文「平行線の理論」に於いて同様の主張をしている(この論文は1786年に発見された)。

カール・フリードリヒ・ガウスは、1824年11月8日の手紙に於いて、鋭角仮定のもとで整合的な幾何学が成立する可能性を示唆し、そこにはある定数があってこれが大きいほど通常の幾何学に近づくと述べた。

ガウスの言うある定数とは、現代の言葉で言えば空間の曲率 k に対し、-(1/k)のことである。ガウス個人は非ユークリッド幾何の存在を確信していたと見られるが、宗教論争に巻き込まれる事を恐れ公表していない。

非ユークリッド幾何学の成立

ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。

ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。

ベルンハルト・リーマン (スタブ)

あわせて4人が3通りの方法を発見した。その結果をまとめると以下のようになる。なお、ここでは曲がった面上や空間内の「直線」は二点間の最短距離を指す。平行線は絶対に交わらない二本の直線である。

研究結果
結論リーマンユークリッドロバチェフスキー・ボーヤイ
平行線の数 0本1本2本以上
図形 凸面(球体)平面凹面

幾何学の相補性

楕円・放物・双曲の各幾何学は、互いに他を否定する存在ではなく、いわば並行に存在しうる幾何学であることを注意しておきたい。各幾何は、それぞれ他の幾何の中に(少なくとも局所的には)モデルを持ち、したがって互いに他の体系の正当性を保証することになるからである。つまり、ユークリッド幾何学が無矛盾な体系であれば他の幾何学もやはり無矛盾だというわけである。

関連項目

参考文献

  • 寺阪 英孝『非ユークリッド幾何の世界―幾何学の原点をさぐる』講談社ブルーバックス ISBN 4061179128
  • 高木 貞治『復刻版 近世数学史談・数学雑談』共立出版 ISBN 4320015517
  • 深谷 賢治『双曲幾何 現代数学への入門』岩波書店 ISBN 4000068822
  • 谷口 雅彦、奥村 善英『双曲幾何学への招待―複素数で視る』培風館 ISBN 4563002429
  • 中岡 稔『双曲幾何学入門―線形代数の応用』サイエンス社 ISBN 4781906885

外部リンク

bg:Неевклидова геометрия ca:Geometria no euclidiana cs:Neeuklidovská geometrie da:Ikke-euklidisk geometri de:Nichteuklidische Geometrie en:Non-Euclidean geometry es:Geometría no euclidiana fa:هندسهٔ نااقلیدسی fi:Epäeuklidinen geometria fr:Géométrie non euclidienne he:גאומטריה לא אוקלידית hu:Nemeuklideszi geometria it:Geometria non euclidea ka:არაევკლიდური გეომეტრია ko:비유클리드 기하학 nl:Niet-euclidische meetkunde no:Ikke-euklidsk geometri pl:Geometria nieeuklidesowa pt:Geometria não euclidiana ro:Geometrii neeuclidiene ru:Неевклидова геометрия simple:Non-Euclidean geometry sk:Neeuklidovská geometria sl:Neevklidska geometrija sr:Neeuklidska geometrija sv:Icke-euklidisk geometri uk:Неевклідова геометрія vi:Hình học phi Euclide zh:非欧几里得几何

個人用ツール