空間

出典: Wikipedio


空間(くうかん、Template:Lang-en-short)という用語は、自然哲学、物理、数学、地理学、社会学等々において用いられているが、意味・説明は分野ごとに異なるので、それぞれ説明する。

目次

自然哲学における空間

画像:Ptolemaicsystem-small.png
古代から中世にかけての空間理解がわかる説明図の一例。(ペトルス・アピアヌスの「Cosmographia」 。アントワープ、1539年
画像:Descartes Aetherwirbel.jpg
デカルトの『哲学原理』(1647年)に掲載されている、エーテルの渦と天体の図

自然哲学における理解を解説する。

アリストテレスは、自然学の基礎的概念として、事物の場所「トポス topos」としての空間概念を用い、物事の運動kinesisを説明した。トポスは「接触面」として、諸元素に対して能動的な作用を及ぼす実在であって、それぞれの本性により、火は上方に、土は下方の場所へと運動する、とした。

後にアリストテレスの自然哲学クラウディオス・プトレマイオスの天文学と合体し、性質的な差異と階層構造をもつ有限宇宙が想定された。月下界には月下界特有の性質・法則があり、月の向こう側の空間には、そこ独特の性質・法則があると考えられていた。空間というのは、位置によって性質が異なる、と一般に考えられていたのである。人々は、空間は位置により性質が違うから、地上のものは落下するが、惑星は落ちないまま円運動を続けている、と考えていた。空間は相対的なものであった(宇宙論を参照)。

ルネ・デカルトが1633年に執筆した『宇宙論』の原稿においては、物体とは独立の空間を認めており、運動というのは空間の中のある位置から別の位置への移動」として簡潔に定義できるものであった(だが、この書はデカルトの生前には出版されなかった。出版は死後である。)。その後のデカルトの渦動説(Cartesian Vortex)では、空間にはすきまなく目に見えない何かが満ちており、物が移動すると渦が生じている、物体はによって動かされている、と説明された<ref name="Barbour">Julian Barbour, The Discovery of Dynamics: A Study from a Machian Point of View of the Discovery and the Structure of Dynamical Theories 2001. ISBN 0-19-513202-5Template:仮リンク『動力学の発見』)</ref><ref name="Uchii">内井惣七 『空間の謎・時間の謎 - 宇宙の始まりに迫る物理学と哲学』 中公新書、2006年、ISBN 412101829X</ref>(重力を説明する古典力学的理論を参照)。

自然哲学者アイザック・ニュートンは、上述のデカルトの渦動説は本で読んだものの、その体系に相当無理があると気づいていた。ニュートンは一般に公表はされなかったものの、『重力および流体の平衡について』という書きかけの手稿(『自然哲学の数学的諸原理』が出版される相当前に書かれたもの)を残しており、そこでデカルトの渦動説を名指しで批判している。そして、その手稿で「場所とは物体が占める空間の一部」とし、「静止とは同じ場所にとどまること」「運動とは場所の変化である」としていた(ただしこれは公表されなかった)<ref name="Uchii" />。

ニュートンは、古代以来の「場所により空間の性質が異なる」という考え方に変化をもたすことにもなった。ニュートンは、天界の惑星の運動と地上の物体の落下が同一のしくみによってもたらされているとしても説明可能だと見抜き、「万有引力の法則」を公表した(『自然哲学の数学的諸原理』)。 ニュートンはユークリッド幾何学を用いて、自らの理論体系を構築した。(当時、人類が知っていた幾何学はユークリッド幾何学だけであった。<ref name="Uchii" />。)よって、ニュートン力学においては空間は、無限に広がる3次元のユークリッド空間と想定されていることになる。 『自然哲学の数学的諸原理』の冒頭部分の「定義」に続く箇所において、絶対空間と絶対時間という概念を導入した。「そのnature本性において、外界のいかなるものとも関係がなく、常に同じままで、不動の」と説明されている。ニュートンの力学体系では、空間は均一の性質で広がるものと想定されるようになり「絶対空間」と呼ばれたのである。また、ニュートンは同著においてその説明につづいて、絶対運動および相対運動について説明を行ない、バケツの中に水を入れ回転させる実験の説明を行った<ref name="Uchii" />。

また、ニュートンは宇宙の空間のすべての位置・点が、全ての天体の位置と質量を知っているということから、空間というのは「sensorium dei の感覚中枢」であると述べた。神は絶対性を有しており、宇宙のあらゆる空間に神はあまねく存在している(遍在している)としたのである。(『光学』<ref> 「このようなことが手際よく処理されているということは、物質的ではなく、生きており、知性があり、何処にでも遍在する神のいることが諸現象によって示されているのではないだろうか。神は、いわば彼の感覚器官とでも言える無限の空間において、すべてのものごとが彼に対して直接に立ち現れていることから、それらを深く見通し、完璧に知覚し、完全に理解なさる。」(アイザック・ニュートン『光学』1704年。「問い28」)</ref>)。

ライプニッツは空間というのは、同時に存在する事物の秩序、ととらえた。空間は表象と表象との関係によって定義される、とした。よってライプニッツの考えでは、ニュートンが言うような絶対空間というようなものは否定した。

2種類の空間概念にまつわる議論

絶対空間と相対空間の考え方について議論が行なわれた。

絶対空間は、英国の自然哲学者ニュートンが唱えた空間概念で、連続的で均質な無限の広がりを想定している。<ref>それは、Template:要出典範囲 Template:要出典範囲という。</ref>

これは、ドイツのライプニッツによる批判の対象となった。ライプニッツは、相対空間という概念を提示した。ライプニッツによれば、空間とは諸物の関係であり、空間の存在は、その中の諸物の関係を、幾何学などにより合理的に説明できれば証明されるとした。これは、空間の性質を、諸物の位置ならびに位置相互にある距離として表現するものであった。ニュートン(およびその支持者)とライプニッツ(およびその支持者)の間には、激しい論争が闘わされ、何度も書簡(第1-5書簡)のやりとりがなされた<ref name="Uchii" />。

ライプニッツの第2書簡においては、宇宙における物質の量に関してニュートンを批判しつつ、真空などというものはないときっぱりと否定した。ライプニッツはその理由として、宇宙に物質の量が多ければ多いほど神の力と知恵を行使できる機会が多いのだから、物質のない虚ろな真空などというものはありえない、とした<ref name="Uchii" />。第5書簡では、水銀をいれたガラスのチューブを用いたトリチェッリの実験(1643年)も引き合いに出し、アリストテレス主義者やデカルト主義者らの見解も提示しつつ「空気を抜かれたガラスのチューブには光線が通過することからして小さな穴があいているに決まっている。そしてその穴は空気は通さないけれど、磁気などの希薄な流体を通すのであって、ガラス容器の中にはそのような微小な物質がつまっていると考えるべきである」と述べた<ref name="Uchii" />。(ライプニッツのこの説明は、現在の物理学における磁場などの、目に見ることも触れることもできない「場」の概念を先見するものだったとも評価されている<ref name="Uchii" />。

第4書簡では、万有引力についても攻撃し、「離れた物体同士が、まったく仲介するものなしで互いに引き合うとか、(ある物体のまわりを)物体がまわる(接線方向に進んでゆくことを妨げるものがないのにそうならない)ということも、超自然的だ。このようなことは、ものごとの本性からは説明できない」と非難した<ref name="Uchii" />。ライプニッツの支持者らもニュートンの万有引力の理論を「オカルトだ」と非難した。

Template:要出典範囲、とされるようになった。

物理学における空間

Template:古典力学 19世紀頃に西欧において哲学と呼ばれていた学問諸領域が現代的な学問体系へと再編成されるようになってからの、physics(物理学)における空間概念を解説する。

19世紀や20世紀初頭の段階では、人々は、宇宙空間は一定で不変であると考えていた(宇宙論を参照)。

19世紀後半には、ニュートン力学の再構成が盛んになり、できれば「絶対空間」という概念(仕組み)は抜きで運動を理解しよう、とする試みが盛んに行なわれるようになった<ref name="Barbour" />。 例えば、エルンスト・マッハ(1838-1916)も、観察されることをそのまま記述する方法で科学を再構築することを構想しており、ニュートン力学体系における「絶対空間」や「絶対時間」の概念を、形而上学的な要素の残滓(のこりかす)だとして否定した(『力学の発展史』<ref>日本語訳あり。『マッハ力学』</ref><ref name="Uchii" />)。また、カール・ノイマンルートヴィヒ・ランゲは、ニュートンのように先に空間と時間を仮定してから運動を定義するのではなく、反対に、(観察される)運動と運動の法則から「慣性系」という基準系の構造を構築しようとした<ref name="Barbour" /><ref name="Uchii" />。「絶対空間」と呼ばれるものを見たり認識したことがある人は、未だかつて誰もいなかったのである<ref name="Uchii" />。

ローレンツは、「絶対空間においてエーテルが静止している」とし「宇宙は絶対静止しているエーテルと運動する荷電粒子からなる」とする宇宙論によって、ニュートン的な絶対空間の概念を保持していた<ref name="Uchii" />。

この考え方を支持する人は多く、地球のエーテルに対する運動の効果を地上で測定するという実験が繰り返し行なわれた。マイケルソン・モーリーの実験である。実験結果はエーテルの存在を証明するものではなかった。ローレンツは、「運動する時計は遅れる」とする仮説と、「運動するものさしは収縮する」とする仮説によって、実験結果も受け入れつつ なんとかしてエーテルの存在を認めつづけようとした<ref>関連:アドホックな仮説</ref>。

アルベルト・アインシュタインは、ローレンツの考えとは異なった観点から着想し、「全ての慣性基準系は対等であって、特権的な基準系はない」とする仮説と、「あらゆる慣性基準系において真空中のの速度は一定である」とする仮説によって、ニュートン力学の理論体系を組みなおし、空間と時間に関して新しい考え方を提示した(相対性理論を参照)<ref name="Uchii" />。ここにおいて、空間は時間と連関して扱われることになり、4次元の時空という概念が現れた。

アインシュタインの一般相対性理論以来、重力は空間の歪みと考えられ、空間は曲率がゼロのユークリッド空間ではなく一般にはリーマン空間で表されることになった。そして重力の源は質量であるので、空間は内部の物体とは無関係に存在する単なる容器ではなく、内部の質量自体が空間の構造に影響を与えていることになる。

エドウィン・ハッブルらによって、島宇宙銀河)が遠ざかっていることが発見されてからは、やがて宇宙は一定であるとする定常宇宙論以外に、宇宙が膨張しているとするビッグバン仮説が登場し、両者は拮抗するようにもなり、やがてビッグバン理論の支持者の割合が大きくなった(宇宙論を参照)。

現在の学校の初学者向けの物理の教科書(例えば、高校生向けのそれ)においては、19世紀後半から20世紀前半に行なわれた再構成後の古典力学における空間を教える内容になっており、あたかも現象の起きる舞台となる空っぽの容器のようなものとして扱っている。

また、量子力学では、真空も何もないのではなくエネルギーを持つと考えられるようになった。(例えば「ディラックの海」、「カシミール効果」を参照のこと。)

現代の物理学においては、「アインシュタインが空間からエーテルを追放した」と説明されることも多いものの、そのかわりに、現在のところ、電磁気のや重力の、量子、ヒッグスなど、(一部の物理学者はともかくとして)一般の人々には不可解な「」が空間には満ちている、という説明体系になっているのである(電磁場量子場ヒッグス場も参照)。そして、理論物理学者らが統一場理論を作り上げようと努力・格闘している。だがそもそもその試みがうまくゆくものなのか、どうなのか、はっきりしたことは判っていない。

古典的には、「物質が存在しない物理的空間」を真空と呼んでいたが、現在の物理学では真空の概念も複雑化している(真空を参照)。

物理学を専門とする人などを中心として、物理学における空間を「物理的空間」、それ以外の空間を「抽象空間」と呼ぶこともある。

Template:Seealso

数学や情報工学における空間

Template:出典の明記 種々の物理量や特定の定義を満たす情報など、ある対象をいくつかの「直交」する量を用いて、何らかの空間上の「点」として考えることができるTemplate:要出典。このような抽象的な意味での空間は、緩い制約のもとで多様なものを考えることができるが、どんなものでもよいということではない。しかしこのように扱うことで、数学的な定義を用いて分類できる、幾何学的な構造や操作あるいは直観的なイメージを持ち込むことができるなどの利点が生まれる。

  • 色空間: 人間の色覚に対応する実3次元の空間

幾何学における空間

数学においては、ある集合を “入れ物” に、特定の条件を構造(とくに幾何学的構造)としていれて“幾何学的対象”と考えるとき、入れ物となる集合を空間 (くうかん、GiBupC <a href="http://gpsnqwvzbsbg.com/">gpsnqwvzbsbg</a>, [url=http://dbtauaohikgv.com/]dbtauaohikgv[/url], [link=http://fasownhcrtod.com/]fasownhcrtod[/link], http://npemhjdofvfv.com/)と呼ぶことがある。その場合、集合の元は空間のと呼ばれる。入れ物となる空間に複数の構造が考えられるときには、構造ごとに異なる空間があると考えることが自然であることも少なくない。この場合、空間とは「入れ物となる集合とその集合の上に定義される構造とののことである」として考えていることになる。

集合と条件から公理的に構成される空間をとくに抽象空間(ちゅうしょうくうかん、GiBupC <a href="http://gpsnqwvzbsbg.com/">gpsnqwvzbsbg</a>, [url=http://dbtauaohikgv.com/]dbtauaohikgv[/url], [link=http://fasownhcrtod.com/]fasownhcrtod[/link], http://npemhjdofvfv.com/)と呼んで、具体的な空間と区別することがある。たとえば、ベクトル空間は線型演算の定義できる集合という条件で定まる抽象空間のことだが、実数全体の成す集合 R のような具体的な空間がベクトル空間の構造を持つかどうかということとは独立に、ベクトル空間の公理のみによってその性質などについて統一的に論じることができる。

空間に定義される幾何学的な構造とは、たとえば “近さ”、“向き”、“位置関係”、“広がり” のようなものがそうなのであるが、座標関数のような、通常は代数学的な構造であるとか解析学的な構造であると見なされるようなものも、一部に含んでいる。ホモトピーホモロジーコホモロジーは、空間やその幾何学を計算のしやすい代数系によって捉えるという代数的位相幾何学の思想に基づく産物である一方、不変量として空間を規定する幾何学的な構造の一種であると捉えられる。

ユークリッド空間は空間の雛形として幾何学的な構造を様々に含んでいる。たとえば、“近さ” について、ユークリッド距離と呼ばれる距離関数によって距離空間の構造を備えている。空間(の中の図形)がじているとかいているとか、あるいは “広がり” 具合に関して限界があるとか、繋がっているとか離れているとか、収束・発散、とかいった概念は、ユークリッド空間であれば距離の言葉で解釈して、論じることができる。一般には距離を定めることのできない抽象空間で近さを論じるために、位相空間一様空間といった抽象空間の類が定義される。また、ユークリッド空間上の関数やその解析学は、ユークリッド空間の局所的な振る舞いを明らかにし、微分構造を備えた多様体としての姿を浮き彫りにする。それは、座標による表示を通して、空間上の微分が存在する接空間ベクトル空間としての構造と、その張り合わせとして捉えることもできる。とくに三次元空間では、空間の向きや距離をベクトルの内積や外積などによって把握するベクトル解析が詳しく展開される。

位相空間は、開集合や閉集合の全体がどうなっているべきであるかを明らかにすることで定義されるが、それによって他の多くの幾何学的な構造が統一的に調べられる、非常に広い空間概念である。一方、関数や収束・発散あるいは完備といった、空間の解析学を展開するために必要な性質は一様空間の性質として理解されることも少なくはない。

多様体の場合に限らず、集合上の関数の集まりは、空間の持つ情報を様々に写し取るために、それを空間と双対的な存在の “空間” と見なすようなこともしばしば行われる。こういった関数空間の考察は、多くの場合代数的な道具を空間の研究に導入する便宜を提供することになる。

空間に対して、空間上の自己準同型のつくる作用素環などの関数環および、その上の加群を新たな空間として考えたり、非可換環上の幾何学を展開する場としての非可換空間を通常の空間の変形版と見なす非可換幾何を考察したりといった直接的な影響に留まらず、点の集まりとして定義される空間という点集合論を超えて、詳細な情報を得るには点の不足している空間に対して、関数空間の代数的な情報によって元の空間の情報を引き出したりするようなこと、あるいは抽象代数的な構造物を積極的に幾何学的な空間として捕らえるような代数幾何学的な思想が、現われてくる。

代数幾何学やその応用としての数論幾何学では、局所コンパクト群であるユークリッド空間のようなよく知られた(ふつうの)空間のみならず、たとえば位相空間として離散空間となるさまざまな有限群離散群のような、およそ図形とは思えないようなものが各所で重要な意味を持つなど、興味深いたくさんの抽象空間が扱われる。

地理学における空間

Template:出典の明記 社会科学において、地理学は、空間をその論理契機として枢要な位置にすえている。地理学的空間、地理学用語としての空間は、地表部の一部を指し、3次元空間を地理的要素が分布する2次元的広がりに転用して用いる。一般的に地帯地方地域地区領域などと呼び、地域計画の分野では地理学的空間を立地空間としてとらえ、土地利用、土地所有、家屋分布、道路網、景観等の基礎調査で3次元空間を2次元空間に置きかえることが成されて、踏襲している。相対空間の距離が輸送費・移動に伴う労苦や事業所・社会集団の立地点として、また、絶対空間の広がりが需要空間や国土領域などとしてとらえられ、その理論体系に重要な役割を演じている。新しい経済地理学は、物理的空間と経済・社会との連関を、経済社会による空間の包摂としてとらえ、均質な物理的空間から異質な経済・社会空間が生産される過程をこの包摂過程から体系的に説明している。

経済・社会は、その容器として絶対空間を必ず充用しなければならないが、絶対空間は同時に、連続性をもち、その中に存在する物体や主体を関係付けて均質化してしまう。このため、市場主体や社会集団の自立性は損なわれる。これが、絶対空間の形式的包摂である。これを否定するため、経済・社会を支配する主体は、空間を仕切って、市場主体や社会集団の自立性を回復しなければならない。これが有界化という、絶対空間の実質的包摂の過程である。例えば、最近市場原理主義の下で語られるコモンズの悲劇の問題において、コモンズ(入会地、共有地)は、形式的に包摂された絶対空間であり、これを有界化して各区画を私有とすることは、市場経済への絶対空間の実質的包摂である。

経済・社会はまた、その主体の活動位置の特定のため相対空間も充用しなければならない。だが、相対空間は同時に距離の性質をもち、活動する主体を引き離す。このため、市場など経済・社会組織の統合は困難となる。これが、相対空間の形式的包摂である。これを否定するため、経済・社会を支配する主体は、相対空間の各位置を結びつけて、市場主体や社会集団の統合を回復しなければならない。これが空間統合と呼ばれる、相対空間の実質的包摂の過程である。しかし多くの場合、空間統合は2次元の平面の広がりがつくる距離を1次元の線分の集合たるネットワークによって否定しようとする行為であるので、新幹線高速道路の建設は、この空間統合をより効率的に行う試みであるが、高速交通手段であるほど単位距離あたりコストがより多くかかり、ネットワークが疎になるので、空間の不均質性はかえって拡大してしまう。これを、空間統合のパラドクスという。

これらの絶対・相対空間の実質的包摂を通じて、物理的空間上に、不均質性をもつ、経済・社会の空間編成が刻み込まれる。これが、空間の生産である。とくに、生産された空間が可視的な物体の形をとる場合、その空間のシステムとなった総体を建造環境と呼ぶ。また、物理的(原初的)空間と生産された空間の編成との相互、ならびに実質的包摂の結果生産された領域と空間統合との相互が全体として絡み合った空間を、相関空間と呼ぶ。

社会学における空間

社会学における空間分析において決定的な影響を与えたのが1960-1970年代の空間論的転回である。空間論的転回によって、空間は社会的活動にとっての基本的な素材とみなしつつ、同時に社会的に生産されたものと考えられるようになった。したがって、たとえば、「社会空間」は、この両義性を含み合わせた概念として使用される。この流れを生み出したのは、アンリ・ルフェーヴルミシェル・ド・セルトーデヴィッド・ハーヴェイらである。

社会学における社会空間論としては、マニュエル・カステルの「フローの空間」論、アルジュン・アパデュライの「スケイプ」論がよく知られている。

参考文献

  • 内井惣七 『空間の謎・時間の謎 - 宇宙の始まりに迫る物理学と哲学』 中公新書、2006年、ISBN 412101829X

出典・脚注

Template:Reflist

関連項目

Template:Wiktionary

Template:自然ar:مكان (فيزياء) bat-smg:Pluotmie ca:Espai da:Rum de:Raum (Physik) el:Χώρος en:Space eo:Spaco fa:فضا fi:Avaruus fr:Espace (notion) gl:Espazo he:מרחב ia:Spatio id:Ruang it:Spazio (fisica) ko:공간 la:Spatium lv:Telpa mk:Простор nl:Ruimte (natuurkunde) ru:Пространство sd:پولار simple:Space (physics) sl:Prostor sq:Hapësira sv:Rum (fysik) th:ปริภูมิ tr:Uzay uk:Простір uz:Fazo vi:Không gian zh:空间 (物理)

個人用ツール