有理数

出典: Wikipedio


有理数(ゆうりすう、rational number)とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a / b という分数で表せるのことをいう。原義は λογοςratio = 比)の有る数という意味であり、a / bb に対して a の示す比の値(ab に占める割合)を意味する。したがって、「有比数」と訳した方がよかったという意見もある<ref>一松信『√2の数学』海鳴社、1990年</ref><ref>志賀浩二『数の世界』岩波書店、1992年 ISBN 978-4001152722</ref><ref>本質の研究数学Ⅰ+A 長岡亮介著 旺文社発行</ref>。

分数 a/b と (a×m)/(b×m) は同一の有理数を指す。このように一つの有理数に対して複数の表記があるが、通常は個々の文脈に適した形を選んで利用する。有理数集合は商集合の最も典型的で身近な例となっている。

有理数全体のつくる集合はしばしば、を意味する quotient の頭文字をとり、太字の Q で表す。手書きするときなどには中抜きの太字にするため、書籍等で黒板太字と言われる書体で <math>\mathbb{Q}</math> を使うこともある。

<math>\mathbb{Q} = \left\{
{a \over b} \mid a, b \in \mathbb{Z}, b > 0, \Phi

\right\}</math> であって、Z は整数の全体をあらわす集合であり、また、<math>\Phi</math> は「ab は共通因数を持たない」という条件を表す。もしくは整数集合の直積の商集合として定義することもできる(形式的な構成節参照)

目次

演算

二つの有理数 a / b, c / da, b, c, d は整数で b, d はいずれも 0 でない)が等しいとは、整数の等式

<math>ad - bc = 0</math>

が成り立つことを言い、このとき

<math>{a \over b} = {c \over d}</math>

と記す。加法 "+"、および乗法 "×" が

<math>
{a \over b} + {c \over d} = {ad + bc \over bd},\quad
{a \over b} \times {c \over d} = {ac \over bd}

</math> によって定まり、反数および逆数について

<math>
-\left({a \over b}\right) = {-a \over b} = {a \over -b},\quad
\left({c \over d}\right)^{-1} = {d \over c}

</math> (ここでは b, c, d はいずれも 0 でない)が成り立つ(とくに集合として

<math>\mathbb{Q}
= \left\{{a \over b} \mid a \in \mathbb{N}, b \in \mathbb{Z}, b \ne 0\right\}
= \left\{{a \over b} \mid a \in \mathbb{Z}, b \in \mathbb{N}, b \ne 0\right\}

</math> が成り立つ)。またこれにより、減法 "−" および除法 "÷"が

<math>
{a \over b} - {c \over d} 
= {a \over b} +\left(- {c \over d}\right) = {ad - bc \over bd},\quad
{a \over b} \div {c \over d} 
= {a \over b} \times \left({c \over d}\right)^{-1} = {ad \over bc}

</math> と定まる。

形式的な構成

集合論の用語を用いて整数の全体 Z から形式的に有理数の全体 Q を構成することができる。まず整数の順序対 (a, b) で b が 0 でないようなものの全体 E = Z ×(Z − { 0 }) を考える。ここで E 上の関係 ∼ を

<math>(a, b) \sim (c, d) \iff ac - bd = 0</math>

(a, b, c, dZ, b ≠ 0, d ≠ 0) によって定めると、関係 ∼ は同値関係となる。商集合 E / ∼ を改めて Q と記して、Q における対 (a, b) の属する剰余類を a / b と記すことにすると、このような表記は一意的ではなく、異なる代表元 (c, d) について

<math>{a \over b} = {c \over d} \iff ad - bc = 0</math>

となる。このとき、Q における加法および乗法を上で述べたように

<math>
{a \over b} + {c \over d} = {ad + bc \over bd},\quad
{a \over b} \times {c \over d} = {ac \over bd}

</math> で定めると、この加法と乗法は剰余類同士の演算として矛盾なく定義されている(well-defined)。実際、E における加法および乗法を

<math>
(a, b) + (c, d) = (ad + bc, bd),\quad
(a, b) \times (c, d) = (ac, bd)

</math> と定めると、(a, b) ∼ (a′, b′), (c, d) ∼ (c′, d′) であるとき

<math>
(a, b) + (c, d) \sim (a', b') + (c', d'),\quad
(a, b) \times (c, d) \sim (a', b') \times (c', d')

</math> が成り立つので、Q における加法および乗法は剰余類 a / b, c / d 各々の代表元 (a, b), (c, d) のとり方に依らない。(0, 1), (1, 1) の属する剰余類 0 / 1, 1 / 1 が Q における零元および単位元となることが確かめられ、マイナス元と逆元が上述のように得られるので、これで Q における上述のような四則が全て形式的に正当化される。また、写像 ι を

<math>\iota\colon \mathbb{Z} \to \mathbb{Q} = E /\sim{};\
 m \mapsto {m \over 1}

</math> と定めると ι は単射で、E において (m, 1) + (n, 1) = (m + n, 1) および (m, 1) × (n, 1) = (mn, 1) が成り立つ(さらに ι(1) = 1 / 1 であるから ι は単位的環の準同型となる)から Z は ι によって演算まで込めて Q に埋め込まれる。そこで整数 m と剰余類 m / 1 とを同一視して QZ を含むものと考える。 上記の構成法をより一般的な可換環論的立場から俯瞰すれば、QZ商体ということである。

性質

Q可算無限集合である(これはたとえば、分母と分子の組を二次元平面上の格子点と考え、うずまき状に辿って自然数と対応付ければよい)。 また、Q稠密集合であり、とくに実数全体の成す集合 R の中で稠密である。

有理数を十進法などの位取り記数法を用いて小数表示した場合、どの有理数も位取りの基数のとり方に関わらず有限小数または循環小数のいずれかとなる(もちろん、ある基数で表示したとき有限小数となる有理数が、別の基数では循環小数となったりすること、あるいはその逆になることはある)。

参考文献

<references />

関連項目

Template:Wiktionary

外部リンク


Template:Link FAaf:Rasionele getal an:Numero racional ar:عدد كسري az:Rasional ədədlər bat-smg:Raciuonalosis skaitlios be:Рацыянальны лік be-x-old:Рацыянальны лік bg:Рационално число bn:মূলদ সংখ্যা br:Niver feurek bs:Racionalni broj ca:Nombre racional cs:Racionální číslo cv:Ваклă хисеп da:Rationale tal de:Rationale Zahl el:Ρητός αριθμός eml:Nómmer raziunèl en:Rational number eo:Racionala nombro es:Número racional et:Ratsionaalarvud eu:Zenbaki arrazional fa:اعداد گویا fi:Rationaaliluku fiu-vro:Jagoarv fo:Ráðin tal fr:Nombre rationnel ga:Uimhir chóimheasta gan:有理數 gl:Número racional he:מספר רציונלי hi:परिमेय संख्या hr:Racionalni broj hu:Racionális szám id:Bilangan rasional is:Ræðar tölur it:Numero razionale jbo:dilcyna'u ka:რაციონალური რიცხვი ko:유리수 la:Numerus rationalis lmo:Nümar razziunaal lo:ຈຳນວນປົກກະຕິ lt:Racionalusis skaičius lv:Racionāls skaitlis mk:Рационален број ml:ഭിന്നകം mn:Рационал тоо mr:परिमेय संख्या ms:Nombor nisbah nds:Ratschonale Tall nl:Rationaal getal no:Rasjonale tall pl:Liczby wymierne pms:Nùmer rassional pt:Número racional ro:Număr rațional ru:Рациональное число scn:Nùmmuru razziunali sh:Racionalni broj simple:Rational number sk:Racionálne číslo sl:Racionalno število sr:Рационалан број sv:Rationella tal ta:விகிதமுறு எண் th:จำนวนตรรกยะ tr:Oranlı sayılar uk:Раціональні числа ur:ناطق عدد vi:Số hữu tỉ vls:Rationoale getalln war:Ihap rasyonal xal:Үүлмрин тойг yo:Nọ́mbà oníìpín zh:有理数 zh-classical:分數 zh-min-nan:Pí-sò͘ zh-yue:有理數

個人用ツール