ジェット機

出典: Wikipedio


プライバシー・ポリシー Wikipedioについて 免責事項 ジェット機(ジェットき)とは、ジェットエンジンを用い、その推力によって飛行する航空機である。

ジェットエンジンにはターボプロップエンジンも含まれるが、ターボプロップエンジンでプロペラを駆動する飛行機は一般にプロペラ機に分類される。一方、高バイパス比ターボファンエンジンは推力のほとんどを燃焼ガスによるジェット噴流ではなくエンジン前方のファンによって得るが、この場合はジェット機に分類される。

目次

歴史

黎明期

thumb|ハインケル He 178 世界初のジェットエンジン搭載の航空機は1910年ルーマニアで開発されたコアンダ=1910である。だがコアンダ=1910のエンジンは、レシプロエンジンの駆動力で空気を送り込む言わば中間的なもので、純粋なジェット推進であったわけではなく、また飛行機自体もまともに飛行したとは言いがたかった。

世界で初めてジェットエンジン(ターボジェット)の推進力だけで飛行したのは、ドイツハインケル社によって開発されたHe 178である。初飛行は、1939年8月24日に数m上昇したときだというものと、8月27日に本格周回飛行をしたときだというものの、二つの見解がある。だがこの機体は結局速度などの性能が当時のレシプロ機よりも劣っていた事や、政治的圧力により軍用機としては採用されなかった。

初めて量産されたジェット戦闘機はアメリカ陸軍航空軍P-59で、1943年6月にベル・エアクラフト社に量産型P-59Aを80機発注したが、性能が当時のレシプロ戦闘機に劣っていたため30機製造時点でキャンセルとなり、実戦には投入されずに研究用としてイギリス空軍に1機が提供され、アメリカ海軍にもYF2L-1として3機が提供されたが高い評価は得られなかった。

初めて正式な実戦運用開始された実用ジェット戦闘機はイギリスグロスター ミーティアで、最初の作戦行動は1944年7月27日に行われ、同年8月4日にV1飛行爆弾を初撃墜。第二次世界大戦期間の最終的な戦果は、V1飛行爆弾を14発撃墜したのみで、その期間内には航空機との交戦経験は無かった。同機は朝鮮戦争にも投入され、最終的に1960年代まで運用された。

初めて航空機同士の交戦を行った実用ジェット戦闘機はメッサーシュミットMe262で、1944年7月に試験飛行中の実験隊がデ・ハビランド モスキートと交戦した。同機の正式な実戦配備は同年10月で、第二次世界大戦末期、ロケット弾幕を用いて連合国軍の爆撃機撃墜で戦果を上げたものの、すでに劣勢にあったドイツは状況的に機体もロケット弾も十分な配備数を揃える余裕も無く、戦況を覆すには至らなかった。

Me262の技術は日本にも運ばれており、陸海両軍で開発が行われた。大日本帝国海軍では皇国二号兵器(後の橘花)という名前で、沿岸の敵艦船を攻撃する特殊攻撃機として試験機が開発された。3案のエンジン配置法(機体上部配置、機体埋め込み、釣り下げ)の内、当時の技術力・国内の現状からMe262と同じ釣り下げ方式が採用され、1945年8月7日に11分間の低空飛行で初飛行に成功する。しかし、同年8月11日に二回目のテスト飛行が行われた際、テストパイロットが滑走中にトラブルを察知。離陸中止を試みたものの、零戦を流用した脚部の制動力が機体重量に比べて弱く、オーバーランで脚部を破損。試作止まりで終戦に至った。大日本帝国陸軍ではMe262を大型化したキ201火龍)を戦闘襲撃機(戦闘爆撃機戦闘攻撃機)として開発中であったが、こちらは機体設計中に終戦を迎えている。

他にも、試作のみで終わったハインケルHe280(ドイツ)、戦闘機として第二次世界大戦末期に配備され実戦にも参加したハインケルHe162(ドイツ)、配備されたが実戦には参加しなかったP-80 シューティングスター(アメリカ)、当初は偵察機として開発され、後に爆撃機へと改変されたアラドAr234(ドイツ)などがある。

エンジンの種類

詳しくはジェットエンジンを参照。

初期のジェット機のエンジンはバイパスの無いターボジェットエンジンがほとんどであった。2004年現在、純粋なジェットエンジン(ピュアジェット)はほぼ姿を消したが、戦闘機などの小型超音速機においては低バイパス比のターボファンエンジンを搭載している。

民間旅客機に代表される亜音速大型機は、高亜音速での効率の高さから高バイパス比のターボファンエンジンを用いるのが主流である。例外としては、2003年に運用が停止された超音速旅客機コンコルドが挙げられる。コンコルドはアフターバーナーを備えたターボジェットエンジンを4発搭載していた。

エンジン数

飛行機のエンジンは、エンジンに着目した場合に、1基、2基、3基...と数え、飛行機に着目した場合には、1発(または単発)、2発(または双発)、3発、4発...と数えることが多い。

エンジンの搭載数は、小型機(戦闘機など)では単発か双発である場合が多く、ビジネス機や長距離を飛ぶ大型旅客機では双発、3発、4発搭載のいずれかがほとんどである。民間機で単発ジェットエンジンのものはエンジン信頼性の問題もあり、ほとんどない。

大型旅客機が3発、4発など多数のエンジンを持つ理由は、飛行中の万一のエンジン故障を想定しているためである。双発機にはエンジンが1基止まった場合60分以内に緊急着陸可能な空港がある航路のみを運航できるという規則が存在する。このため双発機では太平洋大西洋などの広い海を横断する航路が設定できないなど、運航上の制約ができてしまう。すなわち3発以上のエンジン搭載は冗長性による信頼性確保を目的としている。しかし近年ではエンジン単体の信頼性が向上したため、ETOPSルールにより双発機でも外洋を航行できるようになっている。

さらに多くのエンジンを搭載する飛行機として、アントノフ An-225ボーイング B-47の6発や、ボーイング B-52の8発があるが、こうした場合はパイロン1つごとに小型エンジン2基をセットにしていることが多い。

エンジン配置

ジェット機において、ジェットエンジンの配置方法は主に以下の3種類に分類される。

  • 主翼下パイロン懸架方式
  • 胴体後部側方配置方式
  • 主翼内あるいは胴体内埋め込み方式

主翼下パイロン懸架方式

旅客機等の大型機では、偶数エンジン数の場合、主翼パイロン懸架方式が主流となっている。MD-11 のような3発機の場合、主翼下パイロン懸架2発と胴体後部(垂直尾翼下)1発配置となる。

この方式には以下のような特徴がある:

  • 利点:
    • エンジンという重量の大きなものを機体重心近くに置くことができる
    • 主翼に釣り下げさせることにより、飛行中に主翼に生ずる揚力によって翼付け根に加わる、曲げモーメントを緩和させることが出来る
  • 欠点:
    • エンジンと地上とのクリアランスを取るために、脚の長い降着装置が必要となり、重量が増加する
    • 主翼に集中質量があることによる主翼のフラッター特性の悪化

胴体後部側方配置方式

主翼下パイロン懸架方式以外に多いのは胴体後部側方配置形態である。プロペラのないジェットエンジンのコンパクトさに着目した手法で、1955年のフランス製双発旅客機シュド・カラベルが最初の例である。大型機ではイギリスVC-10ロシア製の機体で見られるが、それ以外はコミューター機や小型ビジネスジェット機のサイズでしばしば採用される。

この方式には以下のような特徴がある:

  • 利点:
    • 主翼がクリアになることにより主翼の空力特性が向上する
    • 短い降着装置で済むので降着装置の重量が軽減出来る

→小型機には都合がいい形態である

  • 欠点:
    • 重量が機体後部に集中することから、重心が後方になってしまう
    • エンジンが胴体と直接的に接するためにエンジン振動及び騒音が後方キャビン内に伝わり易い(前方は静音となる)

主翼内あるいは胴体内埋め込み方式

多くの戦闘機攻撃機は胴体内にエンジンを埋め込んでいる。

また、主翼付け根にジェットエンジンを埋め込ませた方式を取る機体もわずかながら存在する(デハヴィランド コメットをベースにしたニムロッドなど)。

ステルス爆撃機として有名な全翼機、B-2も機体内部に半分埋め込むような形になっている。

その他の配置

特殊なジェットエンジン配置方式としては、主翼上面にパイロン状のストラットで支持した方式がある。これを採用しているのは、ドイツ製の VFW 614 や、2004年に飛行試験を実施したホンダジェットなどがある。この方式の特徴として以下のようなものが挙げられる:

  • 利点:
    • 主翼下パイロン懸架方式と同様に、機体重心を機体中心近くに置くことができる
    • 主翼上に支持させることにより、飛行中に主翼に生ずる揚力によって翼付け根に加わる、曲げモーメントを緩和させることが出来る
    • 主翼下がクリアになるため、降着装置が短くて済み、降着装置重量が軽減出来る
    • ウォーターラインでの重心位置近くに推力線を置くことが出来る(低翼の場合)
  • 欠点:
    • 主翼上面にエンジンナセルがあることにより、翼上面の圧力分布の乱れに伴う揚力分布の悪化
    • 主翼に集中質量があることによる主翼のフラッタ特性の悪化
    • 胴体とエンジンナセル間がチャネルフローになり、この部分の空力特性把握が難しい
    • 民間機の場合、主翼近くの乗客の視野が狭まったり、近くにエンジンがあることによる心理的影響が否定出来ない(低翼の場合)

スラストリバーサ

大型のジェット機ではスラストリバーサ(thrust reverser、または逆推力装置、逆噴射装置)を装備している場合が多い。スラストリバーサはエンジンの噴気の向きを前面斜め方向に変えることにより、逆向きの推力を生み出す働きがある。主に着陸時の制動距離を短縮するために使用される。日本ではまず見られることはないが、トーイングカーのプッシュバックによらない自力での後退(パワーバックと呼ぶ)に用いられる場合がある。

ターボジェットエンジンや低バイパス比ターボファンエンジンでは、エンジンの排気を直接遮る形式、高バイパス比ターボファンエンジンにおいては、ファンを通った空気だけを遮る形式のスラストリバーサが用いられる。

なおプロペラ機におけるスラストリバーサはプロペラのピッチを逆転することにより実現されている。

エアインテイク

ジェット機においては、エアインテイク(空気取り入れ口)が重要な設計要素になる場合がある。特にエンジンを胴体に埋め込むコンフィギュレーションを採用した場合、エアインテイクの数、機体に対する配置、形状、ダクトの形状が要求される飛行機の性能を左右する。

主翼下パイロン懸架方式・胴体後部側方配置方式の機体ではふつうエンジン数とエアインテイク数は一致するが、胴体内埋め込み方式では一致しない場合もある。MiG-19イングリッシュ・エレクトリック ライトニングのように機首にエアインテイクを設けている機体は双発だがエアインテイクが1であり、F-104サーブ 39 グリペンなど胴体両側面にエアインテイクを設けている機体は単発だがエアインテイクが2つになる。昨今の小型高性能戦闘機は、高迎角飛行でも空気の流入が比較的得やすい胴体下に設置される場合が多くなっており、この場合はエアインテイクとエンジンの数も一致する(F-16F-CK-1など)。(2008年現在)

インテークの項目も参照

関連項目

ca:Avió de reacció da:Jetfly de:Strahlflugzeug dv:ޖެޓު en:Jet aircraft eo:Reagaviadilo es:Avión de reacción fa:هواپیمای جت fi:Suihkulentokone fr:Avion à réaction gu:જેટ વિમાન he:מטוס סילון hi:जेट विमान id:Pesawat jet is:Þota it:Aereo a reazione ko:제트기 lv:Reaktīvā lidmašīna ms:Pesawat jet nl:Straaljager nn:Jetfly no:Jetfly pl:Samolot odrzutowy ru:Реактивный самолёт simple:Jet aircraft sv:Jetflygplan tr:Jet uçağı uk:Реактивний літак vi:Máy bay phản lực zh:喷气式飞机

個人用ツール