ガラス

出典: Wikipedio


thumb|240px|さまざまに加工され美術品にまで昇華したガラス細工 ガラス(硝子、オランダ語:glas、英語:glass)という語は、物質のある状態を指す場合と特定の物質の種類を指す場合がある。

  • 昇温によりガラス転移現象を示す非晶質固体<ref name="化学便覧応用化学編">日本化学会編「化学便覧応用化学編-第6版-第I分冊」丸善 (2002) 13.5 汎用ガラス・ほうろう</ref>。そのような固体となる物質。このような固体状態をガラス状態と言う。結晶と同程度の大きな剛性を持ち、粘性は極端に高い。非晶質でもゴム状態のように柔らかいものはガラスとは呼ばない。詳しくは「ガラス転移点」を参照のこと。
  • 古代から知られてきたケイ酸塩を主成分とする硬く透明な物質。グラス、玻璃(はり)、硝子(しょうし)とも呼ばれる。「硝子」と書いて「ガラス」と読ませる事もよくある。化学的にはガラス状態となるケイ酸化合物(ケイ酸塩鉱物)である。他の化学成分を主成分とするガラスから区別したい場合はケイ酸ガラスまたはケイ酸塩ガラスと言う。石英ガラスも含まれる。本項目ではこの物質について主に記述する。
  • ケイ酸塩以外を主成分とする、ガラス状態となる物質。ケイ酸ガラスと区別するために物質名を付けて○○ガラスと呼んだりガラス質物質と呼んだりする。アクリルガラス、カルコゲンガラス、金属ガラス有機ガラスなど。

語源的にはケイ酸塩ガラスの固体状態を他の物質が取っている場合をもガラスと呼ぶようになったものである。

日本語のガラスの元になったオランダ語glasの発音は、英語のglass同様グラスに近いが、日本語化した時期が古いため、ガラスとなった。日本語での「グラス」は多くの場合はケイ酸塩ガラスでできたコップの意味になる。

ちなみに「ビードロ」または「びいどろ」とは、ガラスを意味するポルトガル語(vidro)である。吹いて遊ぶガラス製の玩具(びいどろ、ぽっぺん、ぽぴん)についてはぽぴんを参照。

目次

概説

[[ファイル:Bristol.blue.glass.arp.750pix.jpg|right|250px|thumb|ガラスを素材として用いた工芸品(イギリス ブリストル産)]] thumb|right|250px|建築物の外壁に用いられているガラス

ガラスの歴史および種類と応用についての詳細は節を改めて述べる。

ガラスには多くの種類があるが、その多くは可視光線に対して透明であり、硬くて薬品にも侵されにくく、表面が滑らかで汚れを落としやすい。このような特性を利用して、窓ガラスレンズ食器(グラス)など市民生活及び産業分野において広く利用されている。近代以前でも装飾品や食器に広く利用されていた。また金属表面にガラス質の膜を作った「琺瑯(ほうろう)」も近代以前から知られてきた。Template:要出典

ガラスの表面に細かな凹凸を付けたすりガラスや内部に細かな多数の空孔を持つ多孔質ガラスは、散乱のために不透明である。遷移金属や重金属の不純物を含むガラスは着色しており、色ガラスと呼ばれる。

2002年の統計によれば日本だけでも建築用に3,900億円、車両用に1,700億円、生活用品に3,000億円、電気製品等に8,300億円分も出荷されている<ref name ="ガラスの本">作咲済夫著 『ガラスの本』 日刊工業新聞 2004年7月30日 初版一刷 ISBN 4-526-05310-4</ref>。

組成・製造・構造

ガラスは、主成分となる二酸化ケイ素 (SiO2) 原料(ケイ砂が多い)と副成分となる種々の金属化合物を粉末として混合し、高温で溶融して液体状態としたものを急冷することで製造される。使用済みのガラス製品を破砕して原料(カレット)として再利用することもできる。

副成分として加えられるのは多くの場合は酸化物であるか高温で酸化物となるものである。主な副成分には、酸化ナトリウム (Na2O) 、酸化マグネシウム (MgO) 、酸化カルシウム (CaO) 、酸化ホウ素 (B2O5) 、酸化リン (P2O5) などがある。原料となるこれらの酸化物は役割に応じて大きく次の3つに分類される。

網目状酸化物
それ自身で非晶質化できるもの。網目状のネットワーク構造を形成する。(SiO2) 、(Al2O3) など。
修飾酸化物
それ自身では非晶質化できないが、上記の網目状酸化物の形成するネットワーク構造内では非晶質化が可能(= 網目を修飾する)なもの。(La2O3) などの希土類酸化物が中心。
中間酸化物
網目状酸化物と修飾酸化物の中間的な存在。非晶質化しにくく、網目状酸化物と修飾酸化物との混合によってガラス化する。

上記の溶融法によるガラス製造は古代から知られているが、現在では他の製造法も存在する。CVD法(chemical vapor deposition method, 化学蒸着法)やVAD法(vapor-phase axial deposition method, 気相軸付け法)では、気体のSiCl4を加熱基板上で反応させて酸化物を堆積し、焼結してガラス化する。ゾル-ゲル法では、例えばテトラエトキシシラン (Si(OCH2CH3)4) などの金属アルコキシドを加水分解し縮重合させてゾルとし、水分を除いて生じたゲルを焼結してガラス化する<ref name="化学便覧応用化学編">日本化学会編「化学便覧応用化学編-第6版-第I分冊」丸善 (2002) 13.5 汎用ガラス・ほうろう</ref><ref name="理化学辞典">長倉三郎、他(編)「岩波理化学辞典-第5版」岩波書店 (1998/02)</ref>。

ガラスは図に示すように原子の並びが不規則な非晶質である。結晶では固体の中の結晶界面で光が散乱したり方向により光学特性や力学特性が異なったりするが、ガラスは非晶質なので全体が均一で透明であり、特定方向にだけ割れやすいということもない。

ガラス状態について

ガラスは液体状態を凍結したような状態(粘度が極端に高くなった状態とも言える)であり、それは準安定状態にあると言える。従って、非常に長時間を経過するとガラスは安定状態である結晶化すると考えられるが、それに対しては異論もある。また、ガラスは固体ではあるが、過冷却およびガラス転移により粘度が非常に高くなった液体であるという捉え方もある。そのため、例えば古い建物の窓ガラスは、上部のガラスが下の方に垂れたような形になっている。

ガラスとアモルファスは、ほぼ同義のものとして捉えてよい場合が多いが、ガラス転移点が明確に存在しない場合をアモルファスと定義するような場合(分野)もある。ガラス転移とは主緩和の緩和時間が100s〜1000sの温度で起こる。

ガラスと同じ構造、すなわちガラス化する物質は珍しくない。ヒ素イオウなどは単体でガラス化する。酸化物ではホウ酸 (B2O5) 、リン酸 (P2O5) などが二酸化ケイ素の代わりに骨格となってガラスを形成する。ホウ酸塩ガラスは工業的に重要である。例えばパイレックスガラスは重量比で12%のホウ酸を含む。

物理的性質

密度は水の2倍半程度、2.4-2.6g/cm3であるが、鉛を用いたフリントガラスでは同6.3に達する。金属ではアルミニウムが2.7、鉄が7.9であるから、フリントガラスは金属なみの密度であることになる。逆に金属元素を含まない石英ガラスは同2.2である。

引っ張り強さに関しては0.3-0.9×108T/Paである。これは鋼鉄の1/10ではあるが、ナイロンや革ベルト、木材と同程度である。

常温では電気抵抗はきわめて高く、絶縁に用いられることもある。内部抵抗率は109から1016 Ωm、湿度50-60%時における表面抵抗率は1010から1012 Ω/□。これはゴムやセラミックスと同程度である。ただし、流動点に近い温度では電気抵抗がきわめて低くなる。

刃物として用いる場合、非晶質であるため理論上は刃の先端径を0にできる(金属などの結晶体はどうしても結晶の大きさ分の径が残ってしまう)ため、鋭利な刃を作ることが可能である。その刃先は研磨によってではなく割れた断面に生じるが、金属より弾性靭性が乏しいためナイフ・包丁などといった一般的な実用刃物としてはあまり適さない(欠け・割れが生じやすい)。しかし生体組織を顕微鏡で観察する際、樹脂で固めた組織を薄くスライスするカッター(ミクロトーム)として用いられることがある。

化学的性質

化学的には、フッ化水素など、一部のフッ素化合物を除く)には強いがSi-O-Si結合がOH(水酸基)により切断されH2SiO3-やNa2SiO3-として溶解するためアルカリに弱い。たとえばガラス瓶に濃厚な水酸化ナトリウムを入れて長期間おくと、徐々にガラス壁が侵されスリガラス状となる。

天然ガラス

自然界で溶融状態から急激に冷却した場合出来る。一例としてテクタイト黒曜石等がある。また、岩石にもガラス質の組織が含まれている場合がある。

ガラスの歴史

概説

Template:See also もともとは植物の灰の中の炭酸カリウムを砂の二酸化ケイ素と融解して得られたので、カリガラスが主体であった。灰を集めて炭酸カリウムを抽出するのに大変な労力を要したのでガラスは貴重なものであり、教会の窓、王侯貴族の食器ぐらいしか用いられたものはなかった。産業革命中期以降、炭酸ナトリウムから作るソーダ石灰ガラスが主流になった。炭酸ナトリウムはソルベー法により効率よく作られるようになったが、現在は天然品(トロナ)を材料に用いることもある。産地としては米国ワイオミング州グリーン・リバーが一大産地であり、世界中の需要の大半をまかなっている。埋蔵量は5万年分あるとされている。

ガラス製造の開始

ガラスの歴史は古く、紀元前4000年より前にメソポタミア古代エジプト二酸化ケイ素(シリカ)の表面を融かして作製したビーズが始まりだと考えられている。当時はガラスそれ自体を材料として用いていたのではなく、陶磁器などの製造と関連しながら用いられていた。原料の砂に混じった金属不純物などのために不透明で青緑色に着色したものが多数出土している。

なお、天然ガラスの利用はさらに歴史をさかのぼる。火山から噴き出した溶岩がガラス状に固まったものは黒曜石と呼ばれ、石器時代から石包丁や矢じりとして利用されてきた。

古代ガラスは砂、珪石、ソーダ灰、石灰などの原料を摂氏1,200度以上の高温で溶融し、冷却・固化するというプロセスで製造されていた。ガラス製造には大量の燃料が必要なため、ガラス工房は森に置かれ、燃料を木に頼っていた。そのため、その森の木を燃やし尽くしたら次の森を探すというように、ガラス工房は各地の森を転々と移動していたのである。ガラス工場が定在するようになったのは石炭石油が利用されるようになってからである。

エジプトや西アジアでは紀元前2000年代までに、一部の植物や天然炭酸ソーダとともにシリカを熱すると融点が下がることが明らかになり、これを利用して焼結ではなく溶融によるガラスの加工が可能になった。これが鋳造ガラスの始まりである。紀元前1550年ごろにはミソポタミアとエジプトで粘土の型に流し込んで器を作るコア法によって最初のガラスの器が作られ、特にエジプトでは様々な技法の作品が作製されて、宝石とガラスを交換することもあったという。

しかし、ガラス製造の中心となっていた地中海東部の文明は紀元前12世紀に衰退し、当時の先端技術はいったん失われる。これが復活するのは紀元前8世紀のメソポタミアおよびシリアパレスチナ沿岸である。紀元前4世紀から同1世紀プトレマイオス朝では王家の要求によって高度な技法のガラスが作られ、ヘレニズム文化を代表する存在の一つとなった。

中国でも紀元前8世紀〜紀元前5世紀には鉛ガラスを主体とするガラス玉や印章が製作されていた。日本でも紀元前3世紀〜紀元後3世紀にはアルカリ石灰ガラスや鉛ガラスによってガラス玉が作られていた。

吹きガラスの発明以降

地中海沿岸を征服したローマ帝国の下で、宙吹きと呼ばれる製造法が紀元前1世紀の中頃にフェニキアで発明された。これによって安価なガラスが大量に生産され、食器や保存器として用いられるようになった。また、ヘレニズム的な豪華なガラスも引き続き製造されている。この頃の精巧なガラスはローマングラス(Roman Glass)と総称される。

5世紀には西ローマ帝国が崩壊するなど政情が不安定になり、ヨーロッパ大陸の技法は衰退した。一方、サーサーン朝ペルシャでは一定の高い水準のガラスが7世紀まで製造され、中国、朝鮮、日本に作品が伝来している。2世紀〜5世紀にはローマとペルシャから中国に吹きガラス法が伝えられた。これら古代西洋のガラスはすべて今日の主なガラス製品に近いソーダ石灰ガラスであった<ref name="ガラスの本"/>。

7世紀には、シリアでクラウン法の原形となる板ガラス製造法が生み出された。これは一旦、手吹き法によりガラス球を造り、遠心力を加えて平板状にするもので、仕上がった円形の板を、適宜、望みの大きさや形に切り出すことができるメリットがあった。この手法はヨーロッパに伝播し、ガラス板の大量生産に結びついた。

中世のガラス

8世紀頃から、西ヨーロッパでは高度なガラスの製作が再開した。12世紀には教会ゴシック調の複雑なステンドグラスが備わるようになり、13世紀には不純物を除いた無色透明なガラスがドイツ南部やスイス、イタリア北部で開発された。

良質の原料を輸入できたヴェネツィアのガラス技術は名声を高めたが、大火事の原因となった事と機密保持の観点から1291年ムラーノ島に職人が集中・隔離された。ここでは精巧なガラス作品が数世紀にわたって作られ、15世紀には酸化鉛と酸化マンガンの添加により屈折率の高いクリスタルガラスを完成させた。

操業休止期間の他国への出稼ぎなどによって技法はやがて各地に伝わり、16世紀には北ヨーロッパスペインでも盛んにガラスが製造された。この頃、中央ドイツボヘミアでもガラス工房が増えている。これは原料となる灰や燃料の薪が豊富であり、かつ河川沿いにあり都市への物流に好都合だったためである。

また、15世紀にはヨーロッパ各地でさかんにステンドグラスが製造された。当時の平坦なガラスは吹いて作ったガラスを延べてアイロンがけすることで作られていた。大面積の板ガラスが作られるようになったのは20世紀に入ってからである。

日本では8世紀〜16世紀までガラス製造が衰退した<ref name="ガラスの本"/>。

近世

1670年代に入ると、ドイツ・ボヘミア・イギリスの各地で同時多発的に、無色透明なガラスの製法が完成した。これは精製した原料にチョークまたは酸化鉛を混ぜるものである。この手法によって厚手で透明なガラスが得られ、高度な装飾のカットやグレーヴィングが可能になり、重厚なバロックガラスやロココ様式のガラスが作られた。

また、アメリカ合衆国ではヴァージニア州に来たヨーロッパからの移民がガラスの生産を始めた。産業的にはなかなか軌道に乗らなかったが、大規模な資本の投下が可能な18世紀末になると豊富な森林資源を背景に工場生産が行なわれるようになった。

中国ではの時代にガラスの製造が盛んになり、特に17世紀から18世紀康熙帝雍正帝乾隆帝の頃に山東省広州で技法が発達した。また、日本でも徳川吉宗の書物の輸入解禁によってガラスの製造が始まり、江戸切子などが作られた。

F・ジーメンスらが1856年特許を取得した蓄熱式槽窯を用いた製法により、溶融ガラスの大量供給が可能となった(ジーメンス法)。摂氏1600度の高温で原料を数日溶かす。

現代

1950年代、ピルキントンフロートガラスの製造を開始した。

1970年にドイツ人のディスリッヒによって考案されたゾル-ゲル法が、ガラスの新しい製造法として登場した。これまでガラスを製造する方法は原料を摂氏2,000度前後の高温によって溶融する必要があったが、ゾル-ゲル法ではガラスの原料となる化合物や触媒を有機溶液に溶かし込んで、摂氏数十度の環境で加水分解と重合反応を経て、溶融状態を経由せずに直接ガラスを得る。実際は完成したゲルが気泡を含むため、最終的には摂氏1,000度程度に加熱して気泡を抜いてやる必要がある。この方法の発明によって、ガラスに限らず有機無機ハイブリッド材料の創製など、従来では考えられなかった用途が開かれてきている<ref name="ガラスの本"/>。

近年では摂氏10000度のプラズマを利用して原料を一瞬で溶かす方法が実用化に向けて開発中である。燃料費を削減でき、温室効果ガスの削減に寄与する。

現在、ガラスは食器や構造材のみならず、電子機器光通信など幅広い分野で生活に必要不可欠なものとなっている。

ガラスの応用

いろいろなガラス

主なガラス製造会社

主なガラス工芸品・会社

比喩

ガラスを使った比喩は、大きく分けて2種類の意味に使われる。

出典

Template:Reflist

関連項目

Template:Commonscat Template:Wiktionary

外部リンク

Template:物質の状態Template:Link FA af Template:Link FA

af:Glas an:Vidre ar:زجاج arz:ازاز bat-smg:Stėklos be:Шкло bg:Стъкло bn:কাঁচ br:Gwerenn bs:Staklo ca:Vidre cs:Sklo cy:Gwydr da:Glas de:Glas el:Γυαλί en:Glass eo:Vitro es:Vidrio et:Klaas eu:Beira fa:شیشه fi:Lasi fr:Verre ga:Gloine gl:Vidro gn:Itavera he:זכוכית hi:कांच hr:Staklo ht:Vè (materyo) hu:Üveg id:Kaca io:Vitro is:Gler it:Vetro ko:유리 ku:Cam la:Vitrum lmo:Véder lt:Stiklas lv:Stikls mk:Стакло ml:സ്ഫടികം mr:काच ms:Kaca mt:Ħġieġ nap:Vrito new:खा nl:Glas nn:Glas no:Glass (materiale) oc:Veire os:Авг pl:Szkło pt:Vidro qu:Q'ispillu ro:Sticlă ru:Стекло scn:Vitru sh:Staklo simple:Glass sk:Sklo sl:Steklo sq:Xhami (material) sr:Стакло sv:Glas sw:Kioo ta:கண்ணாடி te:గాజు (పదార్ధం) th:แก้ว tl:Salamin (materyales) tr:Cam ug:ئەينەك uk:Скло ur:شیشہ vec:Véro vi:Thủy tinh war:Saraming xal:Шил yi:גלאז zh:玻璃 zh-yue:玻璃

個人用ツール